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1 Convergence

Assumption 1 (A1) Objective function f is B-smooth,
IVf(x) = Vi)l <Blx -yl

Assumption 2 (A2)

(1) The index i; does not depended from the previous ig,i1,...,%—1-
(2) E;, [Vfi,(x")] = Vf(x") (Unbiased Estimation).
(3) Ei, [V fi, x)]I?] = 0? + [V f(x")||? (control the variance).

Assumption 3 (A3) The objective function f is a-strong convex
e’
F¥) = FO) + (V) y = %)+ 5 Ix = y]*

Lemma 1 Under Al, consider the SGD, then
E; [f(x"1)] = E[f(x")[x']

Bst
< S = sV, B, [V fi, (X)) + =

B[V £, (<))

Proof 1 We know that
FE) < Fx) H (V) x = x) + g”xt“ —x'||?
ﬁs
= f(x") = s(Vf(x"), V fi, (x")) + SV fi, (x|
Taking the expectation of the above inequality leads to the results.

Lemma 2 Based on Al and A2, it has

52 St
oo (1= Zv (eI

E; [f(x) - f(x")] <
Proof 2 According Lemma 1, A1 and A2,

B, [f(x™) = f(x")] < %Eu[\lvﬂt( O] = se{V f(x"), B, [V fi, (x)])

= 050 2 94 ) = stV )
= B - B v s



Lemma 3 Suppose A3 holds, then
fx) = f <*||Vf( )7

Non-convex and (-smooth objective functions:

SGD is a commonly accepted method for training neural networks, which are usually non-convex and smooth
optimization problems. For GD, we have known that

min V()] < O(—=).

0<t<T—1 VT
What about SGD?
Theorem 1 (Fized Learning Rate)
Suppose that A1 and A2 hold. Let sy = s € (0,1/8], then
2(f(x°) — f*)
< _
1/TZ IV f(x sBo® + 7
Proof 3 Based on Lemma 2,
Bsi o Bs
B [f(h) = f(x)] < Sho® = si(1 - —t)||Vf( Nl1%,
Bs? 5 s NP
<2522 .
< Eo? = SV

Take the expectation over all indices, then

2
E[f () — 0] < 20 - 2BV ) 2]
Thus,
* 0 T 0 5 TS 5 o2
F = &) SE[f() = f(x)] < =5 DBV + :
t=0
Then,
1/TZ||Vf 3 < sB0? +w.
In addition, it has
2 XO _fx
B min VA6 < o 4 2LOT T
Remark 1 Consider for SGD,
1
EBl,_min_ V6] = 0o+ |/ 5. (1
For GD, we has
. 1
i VI =0 7). @



Theorem 2 (Non-fized Learning Rate)
Suppose that A1 and A2 hold. Let s, € (0,1/8] for all t, and Y, s; = 00, ., s7 < co. Then,

T—1
1
El——— Z 5t||vf(xt)||2] —0
t=0 St t=0

as T — oc.

Proof 4 Similar to the previous theorem,

2
B 1) — f(x)] < 2202 — ()
Then, take the expectation over all indices, then
2
B[ (=) — f(x)] < Zoto? — 2RIV S|P
Thus,
Bo? 9 T— 111
E[f(x") - f(x")] < - Z Z seE[[[V(x)]1?).
t=0 t=0
171 Bo? T—1
3 O SEIVAIP) < B — S5+ o S o7
t=0 t=0
9 T—1
< J6) — S+ PN
t=0
Therefor,
T—1
lim > s B[V ()] < oo
t=0
and
1 T—1
Bl > sl VI = 0
t=0 St =0

Recall that, we have shown that GD for strong convex and smooth objective function has

T —x*|* = O(exp(~T)), and f(x") — f(x*) = O(exp(~T)).

[[x
What about SGD??

Theorem 3 (Fized Learning Rate)
Assume that A1, A2 and A8 holds and s; = s € (0,1/0] for all t, then

BT -~ 571 < 250+ expl- ST) - £,
Proof 5 Based on Lemma 2 and 3,
B L) — 1) < 2ot 1= B2 v ey 2
< Bio— SNk
e

< To® — as(f(x) - )



Then,

t+1 532 2 t *
Eo /() = 4+ 17 = Fx) < 20 — as(f(x) - £°),
thus,
t+1 * Bs® , t *
By [ = 1) < B0 4 (1= as) (f (<) — 1)
Moreover,

(1= as)( ) — 1~ 252)
Take all expectation for the indices, then
B/ ()~ 1]~ 2202 < (1 - as) B () — /'] ~ 22 0.
Thus,
Ty _ p* ﬁ 2 _ T 0y _ *_ﬁ 2
BIfT) - 1] < 5207 + (1= a9) (/") - f* = 320%)
< DT ospl(- ST - S,

Theorem 4 (SGD with diminishing learning rate)

Suppose that A1, A2 and A3 hold, and s, satisfies >, sy = o0 and Y, si < co. For ezample, we set

sp = ’v+t’€> 1/a ¥ >0 and sy = £ 5 <1/B. Then

(3)

*) Z2BU }

where v = max{y(f(x°) — f*), 2(fa—1)

Proof 6 Based on Lemma 2, Lemma 3 and fact 1 — '8—;3 <1- '8—;3 =1/2, then

B [f(x") = f()] < SFo® —asi(f(x) = ),
Then,
B [f() = 1] < 5o + (1= as)(F(x') = 7).

Take all expectations, it has

Let us prove the final results by induction, fort =0

B (<) = J] = S5 () = 17) <

by the definition of v.
Suppose that holds for t > 0, then



B[+ — 1) < 0% 4 (1~ asEI(f(x) — 1)

2
s
< %02+(1 fozst)’y_i_t
22 14
_ L2 (- 0‘7) v
2(y+1t) v+t y+t

_(y+t=1r (af-1v Ba?e?

B E  CEIERTOR ey
Due to the facts

Bo?0? Bo2?  Bol?(al — 1)
—(al =1 < — =
;- lat-hrs—; Wa—1)
and
(V)= (y+t+ Dy +t-1) =(y+1)* -1,
then
+t—1)v
E 1y ) < (’Y
e+ -y < T
v
< ——m.
Ty+t+1

Remark 2 e From the result, we see that choosing a decreasing learning rate results in a sublinear

convergence rate, which is worse that is worse than the SGD with constant learning rate. However,
note that such a choice enables to reach any neighborhood of the optimal values.

o The similar result
ol o?

E[f(x") = f*] < O(|x" —x*|| exp(=—57) + Jo7)

can be found in [?].
e For only the convex function, SGD has the property
E[f(x") - f*] <= O(1/VT).

See Theorem 8.18 on Page 475 of Textbook.

1.0.1 Extensions

e Momentum Method:

Xt+1 _ Xt + Vt+1

)

vt = vt — s, Vi, (x).
This means

xt =x" — 5,V fi, (x") + p (x' —x"71).

—_——

momentum
e Nesterov Accelerate Method:

y T =x" 4 (xt - x

Xt =yt sV fi, (yt+1)_

t—l)

)



This means
Xt+1 _ Xt _ stvfit (yt+1) + Lt (Xt _ Xt—l)

—_——
momentum
— t=1
and Ht = +2-
o AdaGrad:
t+1 _ ot St t
x=x' - —_@g
VGt + ¥,

Gt+1 _ Gt 4 gt ®gt7

where g' = Vf;, (x').

e RMSProp:
St — b % o gt
M = pM* + (1 - p)g' ® g’
R = /MU 4 e,
e Adam:

St =p1S 4+ (1 - pr)g’,
M= po M+ (1 - po)g' @ g,
ot ® St

\/ M+ ey,

Lyt

_ . _ .

where St = 5+ and Mt = M
i i
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