Lecture 11

Lecturer:Xiangyu Chang
Scribe: Xiangyu Chang
Edited by: Xiangyu Chang

1 Convergence

Assumption 1 (A1) Objective function f is β-smooth,

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\| \leq \beta\|\mathbf{x}-\mathbf{y}\|
$$

Assumption 2 (A2)
(1) The index i_{t} does not depended from the previous $i_{0}, i_{1}, \ldots, i_{t-1}$.
(2) $\mathbb{E}_{i_{t}}\left[\nabla f_{i_{t}}\left(\mathbf{x}^{t}\right)\right]=\nabla f\left(\mathbf{x}^{t}\right)$ (Unbiased Estimation).
(3) $\mathbb{E}_{i_{t}}\left[\left\|\nabla f_{i_{t}}\left(\mathbf{x}^{t}\right)\right\|^{2}\right]=\sigma^{2}+\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}$ (control the variance).

Assumption 3 (A3) The objective function f is α-strong convex

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{\alpha}{2}\|\mathbf{x}-\mathbf{y}\|^{2}
$$

Lemma 1 Under A1, consider the $S G D$, then

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[f\left(\mathbf{x}^{t+1}\right)\right] & :=\mathbb{E}\left[f\left(\mathbf{x}^{t+1}\right) \mid \mathbf{x}^{t}\right] \\
& \leq f\left(\mathbf{x}^{t}\right)-s_{t}\left\langle\nabla f\left(\mathbf{x}^{t}\right), \mathbb{E}_{i_{t}}\left[\nabla f_{i_{t}}\left(\mathbf{x}^{t}\right)\right]\right\rangle+\frac{\beta s_{t}^{2}}{2} \mathbb{E}_{i_{t}}\left[\left\|\nabla f_{i_{t}}\left(\mathbf{x}^{t}\right)\right\|^{2}\right]
\end{aligned}
$$

Proof 1 We know that

$$
\begin{aligned}
f\left(\mathbf{x}^{t+1}\right) & \left.\leq f\left(\mathbf{x}^{t}\right)+\left\langle\nabla f\left(\mathbf{x}^{t}\right), \mathbf{x}^{t+1}-\mathbf{x}^{t}\right]\right\rangle+\frac{\beta}{2}\left\|\mathbf{x}^{t+1}-\mathbf{x}^{t}\right\|^{2} \\
& =f\left(\mathbf{x}^{t}\right)-s_{t}\left\langle\nabla f\left(\mathbf{x}^{t}\right), \nabla f_{i_{t}}\left(\mathbf{x}^{t}\right)\right\rangle+\frac{\beta s_{t}^{2}}{2}\left\|\nabla f_{i_{t}}\left(\mathbf{x}^{t}\right)\right\|^{2}
\end{aligned}
$$

Taking the expectation of the above inequality leads to the results.

Lemma 2 Based on A1 and A2, it has

$$
\mathbb{E}_{i_{t}}\left[f\left(\mathbf{x}^{t+1}\right)-f\left(\mathbf{x}^{t}\right)\right] \leq \frac{\beta s_{t}^{2}}{2} \sigma^{2}-s_{t}\left(1-\frac{\beta s_{t}}{2}\right)\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}
$$

Proof 2 According Lemma 1, A1 and A2,

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[f\left(\mathbf{x}^{t+1}\right)-f\left(\mathbf{x}^{t}\right)\right] & \leq \frac{\beta s_{t}^{2}}{2} \mathbb{E}_{i_{t}}\left[\left\|\nabla f_{i_{t}}\left(\mathbf{x}^{t}\right)\right\|^{2}\right]-s_{t}\left\langle\nabla f\left(\mathbf{x}^{t}\right), \mathbb{E}_{i_{t}}\left[\nabla f_{i_{t}}\left(\mathbf{x}^{t}\right)\right]\right\rangle \\
& =\frac{\beta s_{t}^{2}}{2}\left(\sigma^{2}+\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}\right)-s_{t}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2} \\
& =\frac{\beta s_{t}^{2}}{2} \sigma^{2}-s_{t}\left(1-\frac{\beta s_{t}}{2}\right)\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}
\end{aligned}
$$

Lemma 3 Suppose A3 holds, then

$$
f(\mathbf{x})-f^{*} \leq \frac{1}{2 \alpha}\|\nabla f(\mathbf{x})\|^{2}
$$

Non-convex and β-smooth objective functions:

SGD is a commonly accepted method for training neural networks, which are usually non-convex and smooth optimization problems. For GD, we have known that

$$
\min _{0 \leq t \leq T-1}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\| \leq O\left(\frac{1}{\sqrt{T}}\right)
$$

What about SGD?

Theorem 1 (Fixed Learning Rate)
Suppose that A1 and A2 hold. Let $s_{t}=s \in(0,1 / \beta]$, then

$$
\mathbb{E}\left[1 / T \sum_{t=0}^{T-1}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}\right] \leq s \beta \sigma^{2}+\frac{2\left(f\left(\mathbf{x}^{0}\right)-f^{*}\right)}{T s}
$$

Proof 3 Based on Lemma 2,

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[f\left(\mathbf{x}^{t+1}\right)-f\left(\mathbf{x}^{t}\right)\right] & \leq \frac{\beta s_{t}^{2}}{2} \sigma^{2}-s_{t}\left(1-\frac{\beta s_{t}}{2}\right)\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2} \\
& \leq \frac{\beta s^{2}}{2} \sigma^{2}-\frac{s}{2}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}
\end{aligned}
$$

Take the expectation over all indices, then

$$
\mathbb{E}\left[f\left(\mathbf{x}^{t+1}\right)-f\left(\mathbf{x}^{t}\right)\right] \leq \frac{\beta s^{2}}{2} \sigma^{2}-\frac{s}{2} \| \mathbb{E}\left[\nabla f\left(\mathbf{x}^{t}\right) \|^{2}\right]
$$

Thus,

$$
f^{*}-f\left(\mathbf{x}^{0}\right) \leq \mathbb{E}\left[f\left(\mathbf{x}^{T}\right)-f\left(\mathbf{x}^{0}\right)\right] \leq-\frac{s}{2} \sum_{t=0}^{T-1} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}\right]+\frac{T s^{2} \beta}{2} \sigma^{2}
$$

Then,

$$
\mathbb{E}\left[1 / T \sum_{t=0}^{T-1}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}\right] \leq s \beta \sigma^{2}+\frac{2\left(f\left(\mathbf{x}^{0}\right)-f^{*}\right)}{T s}
$$

In addition, it has

$$
\mathbb{E}\left[\min _{0 \leq t \leq T-1}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}\right] \leq s \beta \sigma^{2}+\frac{2\left(f\left(\mathbf{x}^{0}\right)-f^{*}\right)}{s T}
$$

Remark 1 Consider for $S G D$,

$$
\begin{equation*}
\mathbb{E}\left[\min _{0 \leq t \leq T-1}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|\right]=O\left(\sigma+\sqrt{\frac{1}{T}}\right) \tag{1}
\end{equation*}
$$

For GD, we has

$$
\begin{equation*}
\min _{0 \leq t \leq T-1}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|=O\left(\sqrt{\frac{1}{T}}\right) \tag{2}
\end{equation*}
$$

Theorem 2 (Non-fixed Learning Rate)
Suppose that A1 and A2 hold. Let $s_{t} \in(0,1 / \beta]$ for all t, and $\sum_{t} s_{t}=\infty, \sum_{t} s_{t}^{2}<\infty$. Then,

$$
\mathbb{E}\left[\frac{1}{\sum_{t=0}^{T-1} s_{t}} \sum_{t=0}^{T-1} s_{t}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}\right] \rightarrow 0
$$

as $T \rightarrow \infty$.
Proof 4 Similar to the previous theorem,

$$
\mathbb{E}_{i_{t}}\left[f\left(\mathbf{x}^{t+1}\right)-f\left(\mathbf{x}^{t}\right)\right] \leq \frac{\beta s_{t}^{2}}{2} \sigma^{2}-\frac{s_{t}}{2}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}
$$

Then, take the expectation over all indices, then

$$
\mathbb{E}\left[f\left(\mathbf{x}^{t+1}\right)-f\left(\mathbf{x}^{t}\right)\right] \leq \frac{\beta s_{t}^{2}}{2} \sigma^{2}-\frac{s_{t}}{2} \| \mathbb{E}\left[\nabla f\left(\mathbf{x}^{t}\right) \|^{2}\right]
$$

Thus,

$$
\begin{aligned}
& \mathbb{E}\left[f\left(\mathbf{x}^{T}\right)-f\left(\mathbf{x}^{0}\right)\right] \leq \frac{\beta \sigma^{2}}{2} \sum_{t=0}^{T-1} s_{t}^{2}-\frac{1}{2} \sum_{t=0}^{T-1} s_{t} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}\right] \\
& \frac{1}{2} \sum_{t=0}^{T-1} s_{t} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}\right] \leq \mathbb{E}\left[f\left(\mathbf{x}^{0}\right)-f\left(\mathbf{x}^{T}\right)\right]+\frac{\beta \sigma^{2}}{2} \sum_{t=0}^{T-1} s_{t}^{2} \\
& \leq f\left(\mathbf{x}^{0}\right)-f\left(\mathbf{x}^{*}\right)+\frac{\beta \sigma^{2}}{2} \sum_{t=0}^{T-1} s_{t}^{2}
\end{aligned}
$$

Therefor,

$$
\lim _{T \rightarrow} \sum_{t=0}^{T-1} s_{t} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}\right]<\infty
$$

and

$$
\mathbb{E}\left[\frac{1}{\sum_{t=0}^{T-1} s_{t}} \sum_{t=0}^{T-1} s_{t}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2}\right] \rightarrow 0
$$

Recall that, we have shown that GD for strong convex and smooth objective function has

$$
\left\|\mathbf{x}^{T}-\mathbf{x}^{*}\right\|^{2}=O(\exp (-T)), \text { and } f\left(\mathbf{x}^{T}\right)-f\left(\mathbf{x}^{*}\right)=O(\exp (-T))
$$

What about SGD??
Theorem 3 (Fixed Learning Rate)
Assume that A1, A2 and A3 holds and $s_{t}=s \in(0,1 / \beta]$ for all t, then

$$
\mathbb{E}\left[f\left(\mathbf{x}^{T}\right)-f^{*}\right] \leq \frac{s \beta \sigma^{2}}{2 \alpha}+\exp \left(-\frac{\alpha}{\beta} T\right)\left(f\left(\mathbf{x}^{0}\right)-f\left(\mathbf{x}^{*}\right)\right)
$$

Proof 5 Based on Lemma 2 and 3,

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[f\left(\mathbf{x}^{t+1}\right)-f\left(\mathbf{x}^{t}\right)\right] & \leq \frac{\beta s_{t}^{2}}{2} \sigma^{2}-s_{t}\left(1-\frac{\beta s_{t}}{2}\right)\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2} \\
& \leq \frac{\beta s^{2}}{2} \sigma^{2}-\frac{s}{2}\left\|\nabla f\left(\mathbf{x}^{t}\right)\right\|^{2} \\
& \leq \frac{\beta s^{2}}{2} \sigma^{2}-\alpha s\left(f\left(\mathbf{x}^{t}\right)-f^{*}\right)
\end{aligned}
$$

Then,

$$
\mathbb{E}_{i_{t}}\left[f\left(\mathbf{x}^{t+1}\right)-f^{*}\right]+f^{*}-f\left(\mathbf{x}^{t}\right) \leq \frac{\beta s^{2}}{2} \sigma^{2}-\alpha s\left(f\left(\mathbf{x}^{t}\right)-f^{*}\right)
$$

thus,

$$
\mathbb{E}_{i_{t}}\left[f\left(\mathbf{x}^{t+1}\right)-f^{*}\right] \leq \frac{\beta s^{2}}{2} \sigma^{2}+(1-\alpha s)\left(f\left(\mathbf{x}^{t}\right)-f^{*}\right)
$$

Moreover,

$$
\begin{aligned}
\mathbb{E}_{i_{t}}\left[f\left(\mathbf{x}^{t+1}\right)-f^{*}\right]-\frac{s \beta}{2 \alpha} \sigma^{2} & \leq \frac{\beta s^{2}}{2} \sigma^{2}-\frac{s \beta}{2 \alpha} \sigma^{2}+(1-\alpha s)\left(f\left(\mathbf{x}^{t}\right)-f^{*}\right) \\
& =(1-\alpha s)\left(f\left(\mathbf{x}^{t}\right)-f^{*}-\frac{s \beta}{2 \alpha} \sigma^{2}\right)
\end{aligned}
$$

Take all expectation for the indices, then

$$
\mathbb{E}\left[f\left(\mathbf{x}^{t+1}\right)-f^{*}\right]-\frac{s \beta}{2 \alpha} \sigma^{2} \leq(1-\alpha s)\left(\mathbb{E}\left[f\left(\mathbf{x}^{t}\right)-f^{*}\right]-\frac{s \beta}{2 \alpha} \sigma^{2}\right)
$$

Thus,

$$
\begin{aligned}
\mathbb{E}\left[f\left(\mathbf{x}^{T}\right)-f^{*}\right] & \leq \frac{s \beta}{2 \alpha} \sigma^{2}+(1-\alpha s)^{T}\left(f\left(\mathbf{x}^{0}\right)-f^{*}-\frac{s \beta}{2 \alpha} \sigma^{2}\right) \\
& \leq \frac{s \beta \sigma^{2}}{2 \alpha}+\exp \left(-\frac{\alpha}{\beta} T\right)\left(f\left(\mathbf{x}^{0}\right)-f\left(\mathbf{x}^{*}\right)\right)
\end{aligned}
$$

Theorem 4 (SGD with diminishing learning rate)
Suppose that A1, A2 and A3 hold, and s_{t} satisfies $\sum_{t} s_{t}=\infty$ and $\sum_{t} s_{t}^{2}<\infty$. For example, we set $s_{t}=\frac{\ell}{\gamma+t}, \ell>1 / \alpha, \gamma>0$ and $s_{0}=\frac{\ell}{\gamma} \leq 1 / \beta$. Then

$$
\begin{equation*}
\mathbb{E}\left[f\left(\mathbf{x}^{T}\right)-f^{*}\right] \leq \frac{\nu}{\gamma+T} \tag{3}
\end{equation*}
$$

where $\nu=\max \left\{\gamma\left(f\left(\mathbf{x}^{0}\right)-f^{*}\right), \frac{\ell^{2} \beta \sigma^{2}}{2(\ell \alpha-1)}\right\}$.
Proof 6 Based on Lemma 2, Lemma 3 and fact $1-\frac{\beta s_{t}^{2}}{2} \leq 1-\frac{\beta s_{0}^{2}}{2}=1 / 2$, then

$$
\mathbb{E}_{i_{t}}\left[f\left(\mathbf{x}^{t+1}\right)-f\left(\mathbf{x}^{t}\right)\right] \leq \frac{\beta s_{t}^{2}}{2} \sigma^{2}-\alpha s_{t}\left(f\left(\mathbf{x}^{t}\right)-f^{*}\right)
$$

Then,

$$
\mathbb{E}_{i_{t}}\left[f\left(\mathbf{x}^{t+1}\right)-f^{*}\right] \leq \frac{\beta s_{t}^{2}}{2} \sigma^{2}+\left(1-\alpha s_{t}\right)\left(f\left(\mathbf{x}^{t}\right)-f^{*}\right)
$$

Take all expectations, it has

$$
\mathbb{E}\left[f\left(\mathbf{x}^{t+1}\right)-f^{*}\right] \leq \frac{\beta s_{t}^{2}}{2} \sigma^{2}+\left(1-\alpha s_{t}\right) \mathbb{E}\left[\left(f\left(\mathbf{x}^{t}\right)-f^{*}\right)\right]
$$

Let us prove the final results by induction, for $t=0$

$$
\mathbb{E}\left[f\left(\mathbf{x}^{0}\right)-f^{*}\right]=\frac{\gamma}{\gamma+0}\left(f\left(\mathbf{x}^{0}\right)-f^{*}\right) \leq \frac{\nu}{\gamma+0}
$$

by the definition of ν.
Suppose that holds for $t>0$, then

$$
\begin{aligned}
\mathbb{E}\left[f\left(\mathbf{x}^{t+1}\right)-f^{*}\right] & \leq \frac{\beta s_{t}^{2}}{2} \sigma^{2}+\left(1-\alpha s_{t}\right) \mathbb{E}\left[\left(f\left(\mathbf{x}^{t}\right)-f^{*}\right)\right] \\
& \leq \frac{\beta s_{t}^{2}}{2} \sigma^{2}+\left(1-\alpha s_{t}\right) \frac{\nu}{\gamma+t} \\
& =\frac{\beta \sigma^{2} \ell^{2}}{2(\gamma+t)^{2}}+\left(1-\frac{\alpha \ell}{\gamma+t}\right) \frac{\nu}{\gamma+t} \\
& =\frac{(\gamma+t-1) \nu}{(\gamma+t)^{2}}-\frac{(\alpha \ell-1) \nu}{(\gamma+t)^{2}}+\frac{\beta \sigma^{2} \ell^{2}}{2(\gamma+t)^{2}}
\end{aligned}
$$

Due to the facts

$$
\frac{\beta \sigma^{2} \ell^{2}}{2}-(\alpha \ell-1) \nu \leq \frac{\beta \sigma^{2} \ell^{2}}{2}-\frac{\beta \sigma^{2} \ell^{2}(\alpha \ell-1)}{2(\ell \alpha-1)}=0
$$

and

$$
(\gamma+t)^{2} \geq(\gamma+t+1)(\gamma+t-1)=(\gamma+t)^{2}-1
$$

then

$$
\begin{aligned}
\mathbb{E}\left[f\left(\mathbf{x}^{t+1}\right)-f^{*}\right] & \leq \frac{(\gamma+t-1) \nu}{(\gamma+t)^{2}} \\
& \leq \frac{\nu}{\gamma+t+1}
\end{aligned}
$$

Remark 2 - From the result, we see that choosing a decreasing learning rate results in a sublinear convergence rate, which is worse that is worse than the $S G D$ with constant learning rate. However, note that such a choice enables to reach any neighborhood of the optimal values.

- The similar result

$$
\mathbb{E}\left[f\left(\mathbf{x}^{T}\right)-f^{*}\right] \leq O\left(\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\| \exp \left(-\frac{\alpha T}{\beta}\right)+\frac{\sigma^{2}}{\alpha^{2} T}\right)
$$

can be found in [?].

- For only the convex function, SGD has the property

$$
\mathbb{E}\left[f\left(\mathbf{x}^{T}\right)-f^{*}\right] \leq=O(1 / \sqrt{T})
$$

See Theorem 8.18 on Page 475 of Textbook.

1.0.1 Extensions

- Momentum Method:

$$
\begin{aligned}
& \mathbf{x}^{t+1}=\mathbf{x}^{t}+\mathbf{v}^{t+1} \\
& \mathbf{v}^{t+1}=\mu_{t} \mathbf{v}^{t}-s_{t} \nabla f_{i_{t}}\left(\mathbf{x}^{t}\right)
\end{aligned}
$$

This means

$$
\mathbf{x}^{t+1}=\mathbf{x}^{t}-s_{t} \nabla f_{i_{t}}\left(\mathbf{x}^{t}\right)+\mu_{t} \underbrace{\left(\mathbf{x}^{t}-\mathbf{x}^{t-1}\right)}_{\text {momentum }} .
$$

- Nesterov Accelerate Method:

$$
\begin{aligned}
& \mathbf{y}^{t+1}=\mathbf{x}^{t}+\mu_{t}\left(\mathbf{x}^{t}-\mathbf{x}^{t-1}\right) \\
& \mathbf{x}^{t+1}=\mathbf{y}^{t+1}-s_{t} \nabla f_{i_{t}}\left(\mathbf{y}^{t+1}\right)
\end{aligned}
$$

This means

$$
\mathbf{x}^{t+1}=\mathbf{x}^{t}-s_{t} \nabla f_{i_{t}}\left(\mathbf{y}^{t+1}\right)+\mu_{t} \underbrace{\left(\mathbf{x}^{t}-\mathbf{x}^{t-1}\right)}_{\text {momentum }}
$$

and $\mu_{t}=\frac{t-1}{t+2}$.

- AdaGrad:

$$
\begin{aligned}
\mathbf{x}^{t+1} & =\mathbf{x}^{t}-\frac{s_{t}}{\sqrt{G^{t}+\epsilon K_{n}}} \otimes \mathbf{g}^{t} \\
G^{t+1} & =G^{t}+\mathbf{g}^{t} \otimes \mathbf{g}^{t}
\end{aligned}
$$

where $\mathbf{g}^{t}=\nabla f_{i_{t}}\left(\mathbf{x}^{t}\right)$.

- RMSProp:

$$
\begin{aligned}
\mathbf{x}^{t+1} & =\mathbf{x}^{t}-\frac{s_{t}}{R^{t}} \otimes \mathbf{g}^{t} \\
M^{t+1} & =\rho M^{t}+(1-\rho) \mathbf{g}^{t} \otimes \mathbf{g}^{t} \\
R^{t+1} & =\sqrt{M^{t+1}+\epsilon \nVdash_{n}}
\end{aligned}
$$

- Adam:

$$
\begin{aligned}
S^{t+1} & =\rho_{1} S^{t}+\left(1-\rho_{1}\right) \mathbf{g}^{t} \\
M^{t+1} & =\rho_{2} M^{t}+\left(1-\rho_{2}\right) \mathbf{g}^{t} \otimes \mathbf{g}^{t} \\
\mathbf{x}^{t+1} & =\mathbf{x}^{t}-\frac{s_{t}}{\sqrt{\widetilde{M}^{t}+\epsilon \nVdash n}} \otimes \widetilde{S}^{t}
\end{aligned}
$$

where $\widetilde{S}^{t}=\frac{S^{t}}{1-\rho_{1}^{t}}$ and $\widetilde{M}^{t}=\frac{M^{t}}{1-\rho_{2}^{t}}$.

References

